CAB POW \# 24:

POW \# 24 Due Friday not Saturday:

Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each
 of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

Pre-Calc POW \# 24: (HOW \#24 for CAB)

POW \# 24 Due Friday not Saturday:

Question: A

Graph of f
i. Find the area between the x-axis and the graph of f : NB: The area below the x -axis is negative, while the area above the x-axis is positive.
ii. Write the piecewise equation that represent f.
iii. Is f a polynomial function? Justify your answer. (See page 171 Pre-Calc Book)

Question B:

Determine the first and second derivatives of f and g. and evaluate $f^{\prime}(2)$ and $g^{\prime \prime}(-2)$ for the given polynomials below.

$$
f(x)=3 x^{4}-5 x^{2}-7 x \text { and } g(x)=-4 x^{3}+8 x^{2}
$$

College Prep Math POW \# 24

POW \# 24 Due Friday not Saturday:

Question: 1

Graph of f
a) Find the area between the x-axis and the graph of f : NB: The area below the x-axis is negative, while the area above the x-axis is positive.
b) Write the piecewise equation that represent f.
c) Is f a polynomial function? Justify your answer. (See page 171 Pre-Calc. Book)

